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Functional Langevin models for the mesoscopic dynamics of surfactant aggregation in solution
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We discuss a time-dependent potential model for the simulation of surfactant aggregation in solution. The
numerical model is derived from a generalization of time-dependent Ginzburg-Landau theory for conserved
order parameters. An element in our coarse-grained approach is that we retain important aspects of molecular
detail by inclusion of single-chain density functionals. Representative results of simulations of concentrated
dioctadecylamine solutions are discussed. We find that multicomponent coarse-grained simulations are indeed
feasible, and may increase our understanding of a wide variety of mesoscopic aggregation processes in com-
plex surfactant solutions. A conspicuous result is that thermal fluctuations greatly influence the formation of
the aggregate structurd$1063-651X%96)12811-7

PACS numbep): 64.70.Ja, 64.60.My, 83.20.Jp

[. INTRODUCTION commonly done in Ginzburg-Landau models, but rather use

a single chain inverse density-functional description for the

Functional Langevin models offer a natural way to de-chemical potentials. Previously, we studied the random term
scribe slow diffusive and hydrodynamic mesoscale phenomf9], the Gaussian chain density functiofiz0], and the rela-
ena in many complex fluidgl-5]. A generalZ-component tion with fourth-order expansiorid1]. Some results of nu-

evolution equation for coarse-grained diffusive relaxation ofmerical calculations of phase separation in block copolymer

conserved order parameters is melts are discussed in R¢fl2].
In this paper we present an application of the method to

ap,(r) z the aggregation processes in surfactant solutions. A few rep-
p :le fVDu(f,fl)MJ(fl)drl resentative results of simulations in two dimensi2B) are
presented. Since the present version of the model neglects
z SDy(r.ry) hydrodynamic effects, we discuss concentrated surfactant so-
_gt J D dr g+ (1), lutions only. The particular system we studied is an aqueous
=1y dpslry) solution of dioctadecylamine[DODA, (C;gHz,),NH].
(1)  This surfactant is a precursor for soft templates in
D,J(r,r1)=V,-A”(r,rl)Vrl, (membraneprotein crystallizatior{13,14]. The comparison

with the experimental datfl4] shows that the particular

with spatial vectorsr andr,, particle concentration fields density functional we have chosen needs further improve-
p(r) (1=1,... Z), transport coefficientd,; , intrinsic chemi- ~ ment to describe the strong |Iq'UId crystallme-type ordgrmg in
cal potentialsy, (r)=6F/8p,(r) (F is the free energy and surfactant membranes, especially w_|th respec'g to (_:haln-chaln
noise fieldsy (rt). B *=kgT. The first term is the system- correlations. Nevertheless, our main conclusion is that the
atic diffusion, the second term counterbalances Spuriou&]ClUSion of molecular detail in functional LangeVin models
drift, and the third term introduces thermal fluctuations intovia density-functional methods is in principle possible. This
the system. The noise has a Gaussian distribution with mgnay lead to the description of a wide variety of interesting
ments dictated by the fluctuation-dissipation theofé€;7]. ~ Mesoscale phenomena in self-assembling systems. In addi-
This model is a generalization of modgI[4,8]. tion, it seems that thermal fluctuations greatly influence the

In the cited paper§1—5,9 and references cited therein, aggregate structures.
one can find numerous examples of computer simulations
of time-dependent Ginzburg-Landau models for two-
component incompressible liquids with linear transport coef- Il. MODEL DESCRIPTION

ficients and relatively simple fourth-order phenomenological we study a system with volumé containingns solvent
expansion models for the free energy. The goal of mesomolecules anahy, surfactant molecules. Each surfactant mol-
scopic modeling would be a theory of ordering phenomenacule is defined as a triblock copolymer Gaussian chain, with
in complex fluids, based on an atomic description and intomposition Ty Hy Ty, (total number of beads
cluding molecular shape, packing effects, and charges. W, ;T

f functional. derived f lect fi‘:<'l=2NT+NH), whereT is a “tail” and H is a “head” bead.
use a free energy functional, derived for a collection olyye a55ume for simplicity that the system is incompressible
Gaussian chains in a mean-field environment. In this ap

. : “Fand that the bead volumes of the chain and the molecular
proach we try to retain as much as possible of the Unde”y'n%lume of the solvent molecules are the same. i.e

molecular detail, i.e., the architecture and composition of the
chain molecules are important. To this end, we do not use an
expansion of the free energy in the order parameters, as is pr(1)+pu(r)+ps(r)=v 1, (2)
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wherev is the average volume that is available per bead. Theelation [12]. For the solvent molecules with no internal
subscript denotes tail bead§)( head beadsH), or solvent  structure this is a simple normalized Boltzmann weight:
molecules §). We assume furthermore that the dynamics is
controlled by a local exchange mechanism and that the mo- e AUsD
bilities M of the beads and solvent molecules are identical. pslUs](r)=ng Tye PUsgr (10
In this case, the spurious drift term is zero and the general
Langevin model Eq(1) reduces to three coupled stochastic The corresponding single chain density functional of the sur-
partial differential equationgomitting space and time coor- factant molecules relates the two external fieldigr) and
dinate$: Uy(r) to the two density fieldg(r) andpy(r). For example,
5 the density functional for the head beads reads
P

=% VAuVmt @ N« Jwfes(r—RydRy-dRy
pH[UTiuH](r):nDZ:l 5Hs J‘ NfadR:---dR ’
wherel,J=H, T, or S. The kinetic coefficients argn matrix = ViR N (12)
notation
1 where the Kronecker deltals is 1 when bead is of the
pr(v""=p1)  —p1PH ~PTPs head type and 0 otherwise. The Boltzmann factor is given by
A=Mv| —pupT pu(v~'=pp) _Ppr , \ \
- - v 3
PsPT PsPH ps( ps) " fBEeXp[ -5 522 (Ry — Rs_l)z_ﬁszl U (Ry) b,

whereM is the mobility coefficient. The thermal noise is
y R, is the position of bead and a is the Gaussian bond

7=V -C;w;, (5) length parameter. The expression for the tail functional is
similar.
wherew; are Gaussian distributed random vector fields At this point, the mean-field kernel is still unspecified.
Since the statistical units of the chain molecules each sample
(Wax (r,1)=0, (6)  avolume~a® we use a Gaussian kernel with wickt{12]:
(Wax (F,OWyy, (F1, )= 8(t—t') 8(r—rp) 856K, (7) 3 V2
Ix s Ixp UL - 1) 913 9jj » €|J:€|OJ mz e—(3/2a )(r—rl)_
wherex;=Xx,y,z. The noise correlation coefficienG,; are o _ _ . _
related to the kinetic coefficients via The diffusion equations together with the density functionals
and the expression for the mean-field form a closed set,
CCT=2871A. (8)  which can be solved efficiently by a finite difference method

on a cubic meshl12,15. There are six dimensionless param-
The application of the fluctuation-dissipation theorem anceters in the numerical calculations: the dimensionless time
the numerical calculation of the random fields are discusseg=a 'Mh?t, the noise scaling parameté=» 'h® (the
further in[9]. variance of the dimensionless noise scales Witf(), where
The intrinsic chemical potentials are obtained by a density\~ is the time step the ratioah™* of bond lengtha and of
functional argument for a collection of ideal Gaussian chainsnesh sizen, and three exchange interaction parametgts,
in a mean-field environment. Basically, the idea is that on ay,,5, and x;s, wherex,;=(Bv 12)[e)+ €3, —€) —€5].
coarse-grained time scale the collective statistical distribu-
tion function ¥ of all surfactar_lt and s_olve_nt_ mol_ecules is IIl. RESULTS AND DISCUSSION
such that the free energy functiorigl¥] is minimal in each
time interval, given the spatially varying density pattern. The We used aTgH;Tg Gaussian chain as the model for
variation of the free energy with respect to the distributionDODA. The chain was selected using a simple fitting proce-
function'¥, under the constraint that the statistical average oflure, where we compared the single-chain Gaussian chain
the microscopic density operators is the reference densitiwvo-body correlation functions with the corresponding func-
pattern, leads directly to an expression for the intrinsictions from a force field molecular model of DODA. The
chemical potentials. A detailed analysis of the application offunctions of the Gaussian chain were calculated analytically
the method to copolymer melts can be foundig]; here we  with the random-phase approximation mettaé]. The cor-
summarize the results for surfactant solutions. The chemicaklator functions for the molecular model were calculated by
potentials are defined by a Monte Carlo methodT=298 K), using the GROMOS
force field[17]. The fit consists of matching the minima of
_ oF the inverse structure factors in Fourier space of the molecular
m(r)= Spy(r) —U|(r)+§ fVE'J(lr_rlpr(rl)drl’ model and the Gaussian chain. A good fit was obtained by
(99  representing 16 carbon atoms of each tail of the molecular
model by 8 beads in each tail of the Gaussian chain; the
where thee;(r—r’|) are mean-field interactions between amine head and on each side two adjacent carbon atoms are
component andJ. The external potentiald,(r) are related represented by the three head beads. The fitted bond length
to the density fields through a bijective density-functionalparameter of the Gaussian chainas-0.58 nm. We will
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FIG. 1. Time-dependent morphologies of concentrated surfac- FIG. 2. As Fig. 1, except witl§)=52.5.
tant in solution(90% v/v dioctadecylamine in 10%/v wate, .
7=5000(left) and 7=10 000(right). Concentration of headsipped results not shown Thus, the presence c_)f a relatlvel_y small
and solvenilower). The noise level paramet€l=2.1. This is the ~amount of solvent leads to an increase in the effective repul-

value determined by the fluctuation dissipation theorem. sion between apolar and polar parts of the surfactant mol-
ecules: in the microphase separated system, the heads protect
discuss the fitting procedure in more detail elsewhere. the solvent from energetically unfavorable contacts with the

For the interaction parameters we useel =0, tails. Finally, it should be stressed that it takes a very long
v leyr=v tewr=10 kI mol'l, andv te,s=—3 kImol'?,  time to reach fluctuation equilibrium of the collective struc-
corresponding to effective exchange interactions of only dures. In fact, from further extensive simulations of this and
few KgT: xu1=xwt=4, Xns= —1.2. The molecular volume similar systems in 2D and also in 3@ata not shownwe
parameter was estimated from the density of pdiectyl-  found invariably that after some time the system locks into a
amine(0.8 g cm °) [18] as»=0.057 nm. The mesh width in  certain metastable arrangement of aggregate structures, from
the simulations i$=0.5 nm. which it is difficult to escape. The effect is more pronounced

In Figs. 1 and 2, we present the results of two simulationsif the level of the noise is lower. In the complete absence of
each system containing 90%wv surfactant and 10%/v thermal fluctuations the system would very quickly freeze
solvent. We neglected the gradients in one direction and usedto a metastable state. The abundant occurrence of meta-
a relatively small system of 33yrid points[15]. In Fig. 1 are  stable states in self-assembly systems is well known in the
the results of calculations using the nominal values of theexperimental literatur¢19]. The same type of phenomenon
noise scale paramet&)=2.1 (corresponding to the value is also observed in the experimental data on DODA aggre-
v 'h® as prescribed by the fluctuation dissipation thegremgation[14].
and Fig. 2 shows the results using a five times reduced noise Since the level of the noise is an important factor in the
level (settingQ)=52.5. We can roughly estimate the “real” aggregate formation, it is illustrative to estimate the most
time span in the simulations with the Stokes-Einstein relatioreffective value of the noise scale paramedein the present
for the diffusion coefficieng"*M. Since in the concentrated simulations, where all beads and solvent molecules have the
surfactant solution the local viscosity will be much larger same size, the fluctuation dissipation theorem demands that
than 103 kg m™!s™! (the viscosity of watérone unit ofris ~ Q=»'h® But in the real experimental system the molecular
>1 us. volume of solvent is somewhat smaller than the molecular

In both figures we observe the formation of disorderedvolumes of the statistical units of the chain molecule. A bet-
lamellae and various micellar aggregates, where the level dbr parametrization for the noise scale parameter could be
disorder is considerably larger in Fig. 1 with large fluctua-Q.4~vs*h3=4.2, since the fluctuations are most dominant
tions of the surfaces and of membrane thickness. There areia the regions where the solvent concentration is relatively
number of important results. First, the lamellar structures irhigh (interfaces and bulk solventThis would imply that the
the full noise simulation continuously break up and formactual influence of the noise is likely to be smaller than sug-
again, thereby reducing the average size of the aggregategested by the full noise calculatigfig. 1), but not so small
Second, the solvent is in all cases closely associated with thes in the reduced noise calculatitfig. 2).
head beads: no isolated solvent droplets can be found. Third, Comparison with experimental results is difficult, since all
in the absence of solvent no stable microphases are formeaf the experimental data ifil4] refer to dilute solutions.
with the chosen head-tail interaction parametsisulation  Electron micrographs show that in aqueous solutions DODA
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self-assembles into square- and rectangular-shaped plates orWe conclude that in a qualitative sense the simulations
even stacks of lamellae, depending on processing conditionseproduce several important aspects of aggregate formation
The data further suggest that the ordering of the hydrophobim concentrated surfactant solutions, i.e., the effect of added
tails is rather strong, almost crystallinelike. Here, we havesolvent on the aggregate structures, and the formation of
used a single-chain density functional in a mean-field apmetastable states. In addition the simulations show a strong
proach, and as a consequence the strong ordering effects canfluence of the thermal noise. The accurate reproduction of
not be reproduced well: the mean-field approximation forcrystallinelike ordering of tails is in the present model diffi-
chain-chain correlations is obviously not very good forcult to achieve, unless we find a better way to include the
strongly ordered materials. Since the Gaussian chain modehain-chain correlations. It is easy to change the parameters
has no energetic bending terms, the molecules in our simwf the Gaussian chain density functional in such a way that
lation are more flexible than a hydrocarbon chain. The widthmore complex mixtures in 2D and 3D can also be studied.
of the lamellae in the simulations {32 nm, which indicates We are currently investigating the application of the method
that the tails of the Gaussian chain are considerably disotto solutions of long flexible polymer surfactants that do not
dered. This is not in agreement with the experimental findhave crystallinelike ordering properties. In this case the

ings. mean-field approximation is much better.
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