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We discuss a time-dependent potential model for the simulation of surfactant aggregation in solution. The
numerical model is derived from a generalization of time-dependent Ginzburg-Landau theory for conserved
order parameters. An element in our coarse-grained approach is that we retain important aspects of molecular
detail by inclusion of single-chain density functionals. Representative results of simulations of concentrated
dioctadecylamine solutions are discussed. We find that multicomponent coarse-grained simulations are indeed
feasible, and may increase our understanding of a wide variety of mesoscopic aggregation processes in com-
plex surfactant solutions. A conspicuous result is that thermal fluctuations greatly influence the formation of
the aggregate structures.@S1063-651X~96!12811-7#

PACS number~s!: 64.70.Ja, 64.60.My, 83.20.Jp

I. INTRODUCTION

Functional Langevin models offer a natural way to de-
scribe slow diffusive and hydrodynamic mesoscale phenom-
ena in many complex fluids@1–5#. A generalZ-component
evolution equation for coarse-grained diffusive relaxation of
conserved order parameters is
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with spatial vectorsr and r1, particle concentration fields
rI~r ! (I51,...,Z), transport coefficientsLIJ , intrinsic chemi-
cal potentialsmI~r ![dF/dr I~r ! ~F is the free energy!, and
noise fieldshI~r ,t!. b215kBT. The first term is the system-
atic diffusion, the second term counterbalances spurious
drift, and the third term introduces thermal fluctuations into
the system. The noise has a Gaussian distribution with mo-
ments dictated by the fluctuation-dissipation theorem@6,7#.
This model is a generalization of modelB @4,8#.

In the cited papers@1–5,8# and references cited therein,
one can find numerous examples of computer simulations
of time-dependent Ginzburg-Landau models for two-
component incompressible liquids with linear transport coef-
ficients and relatively simple fourth-order phenomenological
expansion models for the free energy. The goal of meso-
scopic modeling would be a theory of ordering phenomena
in complex fluids, based on an atomic description and in-
cluding molecular shape, packing effects, and charges. We
use a free energy functional, derived for a collection of
Gaussian chains in a mean-field environment. In this ap-
proach we try to retain as much as possible of the underlying
molecular detail, i.e., the architecture and composition of the
chain molecules are important. To this end, we do not use an
expansion of the free energy in the order parameters, as is

commonly done in Ginzburg-Landau models, but rather use
a single chain inverse density-functional description for the
chemical potentials. Previously, we studied the random term
@9#, the Gaussian chain density functional@10#, and the rela-
tion with fourth-order expansions@11#. Some results of nu-
merical calculations of phase separation in block copolymer
melts are discussed in Ref.@12#.

In this paper we present an application of the method to
the aggregation processes in surfactant solutions. A few rep-
resentative results of simulations in two dimensions~2D! are
presented. Since the present version of the model neglects
hydrodynamic effects, we discuss concentrated surfactant so-
lutions only. The particular system we studied is an aqueous
solution of dioctadecylamine @DODA, ~C18H37!2NH#.
This surfactant is a precursor for soft templates in
~membrane-!protein crystallization@13,14#. The comparison
with the experimental data@14# shows that the particular
density functional we have chosen needs further improve-
ment to describe the strong liquid crystalline-type ordering in
surfactant membranes, especially with respect to chain-chain
correlations. Nevertheless, our main conclusion is that the
inclusion of molecular detail in functional Langevin models
via density-functional methods is in principle possible. This
may lead to the description of a wide variety of interesting
mesoscale phenomena in self-assembling systems. In addi-
tion, it seems that thermal fluctuations greatly influence the
aggregate structures.

II. MODEL DESCRIPTION

We study a system with volumeV containingnS solvent
molecules andnD surfactant molecules. Each surfactant mol-
ecule is defined as a triblock copolymer Gaussian chain, with
composition TNTHNH

TNT ~total number of beads
N52NT1NH!, whereT is a ‘‘tail’’ and H is a ‘‘head’’ bead.
We assume for simplicity that the system is incompressible
and that the bead volumes of the chain and the molecular
volume of the solvent molecules are the same, i.e.,

rT~r !1rH~r !1rS~r !5n21, ~2!
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wheren is the average volume that is available per bead. The
subscript denotes tail beads (T), head beads (H), or solvent
molecules (S). We assume furthermore that the dynamics is
controlled by a local exchange mechanism and that the mo-
bilities M of the beads and solvent molecules are identical.
In this case, the spurious drift term is zero and the general
Langevin model Eq.~1! reduces to three coupled stochastic
partial differential equations~omitting space and time coor-
dinates!:
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whereI ,J5H, T, orS. The kinetic coefficients are~in matrix
notation!
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whereM is the mobility coefficient. The thermal noise is

h I5“•CIJwJ , ~5!

wherewJ are Gaussian distributed random vector fields
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wherexi5x,y,z. The noise correlation coefficientsCIJ are
related to the kinetic coefficients via

CCT52b21L. ~8!

The application of the fluctuation-dissipation theorem and
the numerical calculation of the random fields are discussed
further in @9#.

The intrinsic chemical potentials are obtained by a density
functional argument for a collection of ideal Gaussian chains
in a mean-field environment. Basically, the idea is that on a
coarse-grained time scale the collective statistical distribu-
tion function C of all surfactant and solvent molecules is
such that the free energy functionalF@C# is minimal in each
time interval, given the spatially varying density pattern. The
variation of the free energy with respect to the distribution
functionC, under the constraint that the statistical average of
the microscopic density operators is the reference density
pattern, leads directly to an expression for the intrinsic
chemical potentials. A detailed analysis of the application of
the method to copolymer melts can be found in@12#; here we
summarize the results for surfactant solutions. The chemical
potentials are defined by
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where theeIJ~ur2r 8u! are mean-field interactions between
componentI andJ. The external potentialsUI~r ! are related
to the density fields through a bijective density-functional

relation @12#. For the solvent molecules with no internal
structure this is a simple normalized Boltzmann weight:
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The corresponding single chain density functional of the sur-
factant molecules relates the two external fieldsUT~r ! and
UH~r ! to the two density fieldsrT~r ! andrH~r !. For example,
the density functional for the head beads reads
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where the Kronecker deltadHs
K is 1 when beads is of the

head type and 0 otherwise. The Boltzmann factor is given by
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Rs is the position of beads and a is the Gaussian bond
length parameter. The expression for the tail functional is
similar.

At this point, the mean-field kernel is still unspecified.
Since the statistical units of the chain molecules each sample
a volume;a3, we use a Gaussian kernel with widtha @12#:
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0 S 3

2pa2D
3/2

e2~3/2a2!~r2r1!2.

The diffusion equations together with the density functionals
and the expression for the mean-field form a closed set,
which can be solved efficiently by a finite difference method
on a cubic mesh@12,15#. There are six dimensionless param-
eters in the numerical calculations: the dimensionless time
t5b21Mh2t, the noise scaling parameterV5n21h3 ~the
variance of the dimensionless noise scales withDt/V, where
Dt is the time step!, the ratioah21 of bond lengtha and of
mesh sizeh, and three exchange interaction parametersxHT ,
xHS , andxTS, wherex IJ5(bn21/2)[e IJ

0 1e JI
0 2e II

0 2e JJ
0 ].

III. RESULTS AND DISCUSSION

We used aT8H3T8 Gaussian chain as the model for
DODA. The chain was selected using a simple fitting proce-
dure, where we compared the single-chain Gaussian chain
two-body correlation functions with the corresponding func-
tions from a force field molecular model of DODA. The
functions of the Gaussian chain were calculated analytically
with the random-phase approximation method@16#. The cor-
relator functions for the molecular model were calculated by
a Monte Carlo method~T5298 K!, using the GROMOS
force field @17#. The fit consists of matching the minima of
the inverse structure factors in Fourier space of the molecular
model and the Gaussian chain. A good fit was obtained by
representing 16 carbon atoms of each tail of the molecular
model by 8 beads in each tail of the Gaussian chain; the
amine head and on each side two adjacent carbon atoms are
represented by the three head beads. The fitted bond length
parameter of the Gaussian chain isa50.58 nm. We will
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discuss the fitting procedure in more detail elsewhere.
For the interaction parameters we usede II

0 50,
n21eHT5n21eWT510 kJ mol21, andn21eHS523 kJ mol21,
corresponding to effective exchange interactions of only a
few kBT: xHT5xWT54, xHS521.2. The molecular volume
parameter was estimated from the density of puredioctyl-
amine~0.8 g cm23! @18# asn50.057 nm3. The mesh width in
the simulations ish50.5 nm.

In Figs. 1 and 2, we present the results of two simulations,
each system containing 90%v/v surfactant and 10%v/v
solvent. We neglected the gradients in one direction and used
a relatively small system of 322 grid points@15#. In Fig. 1 are
the results of calculations using the nominal values of the
noise scale parameterV52.1 ~corresponding to the value
n21h3 as prescribed by the fluctuation dissipation theorem!
and Fig. 2 shows the results using a five times reduced noise
level ~settingV552.5!. We can roughly estimate the ‘‘real’’
time span in the simulations with the Stokes-Einstein relation
for the diffusion coefficientb21M . Since in the concentrated
surfactant solution the local viscosity will be much larger
than 1023 kg m21 s21 ~the viscosity of water! one unit oft is
@1 ms.

In both figures we observe the formation of disordered
lamellae and various micellar aggregates, where the level of
disorder is considerably larger in Fig. 1 with large fluctua-
tions of the surfaces and of membrane thickness. There are a
number of important results. First, the lamellar structures in
the full noise simulation continuously break up and form
again, thereby reducing the average size of the aggregates.
Second, the solvent is in all cases closely associated with the
head beads: no isolated solvent droplets can be found. Third,
in the absence of solvent no stable microphases are formed
with the chosen head-tail interaction parameters~simulation

results not shown!. Thus, the presence of a relatively small
amount of solvent leads to an increase in the effective repul-
sion between apolar and polar parts of the surfactant mol-
ecules: in the microphase separated system, the heads protect
the solvent from energetically unfavorable contacts with the
tails. Finally, it should be stressed that it takes a very long
time to reach fluctuation equilibrium of the collective struc-
tures. In fact, from further extensive simulations of this and
similar systems in 2D and also in 3D~data not shown! we
found invariably that after some time the system locks into a
certain metastable arrangement of aggregate structures, from
which it is difficult to escape. The effect is more pronounced
if the level of the noise is lower. In the complete absence of
thermal fluctuations the system would very quickly freeze
into a metastable state. The abundant occurrence of meta-
stable states in self-assembly systems is well known in the
experimental literature@19#. The same type of phenomenon
is also observed in the experimental data on DODA aggre-
gation @14#.

Since the level of the noise is an important factor in the
aggregate formation, it is illustrative to estimate the most
effective value of the noise scale parameterV. In the present
simulations, where all beads and solvent molecules have the
same size, the fluctuation dissipation theorem demands that
V5n21h3. But in the real experimental system the molecular
volume of solvent is somewhat smaller than the molecular
volumes of the statistical units of the chain molecule. A bet-
ter parametrization for the noise scale parameter could be
Veff'nS

21h354.2, since the fluctuations are most dominant
in the regions where the solvent concentration is relatively
high ~interfaces and bulk solvent!. This would imply that the
actual influence of the noise is likely to be smaller than sug-
gested by the full noise calculation~Fig. 1!, but not so small
as in the reduced noise calculation~Fig. 2!.

Comparison with experimental results is difficult, since all
of the experimental data in@14# refer to dilute solutions.
Electron micrographs show that in aqueous solutions DODA

FIG. 1. Time-dependent morphologies of concentrated surfac-
tant in solution~90% v/v dioctadecylamine in 10%v/v water!,
t55000~left! andt510 000~right!. Concentration of heads~upper!
and solvent~lower!. The noise level parameterV52.1. This is the
value determined by the fluctuation dissipation theorem.

FIG. 2. As Fig. 1, except withV552.5.
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self-assembles into square- and rectangular-shaped plates or
even stacks of lamellae, depending on processing conditions.
The data further suggest that the ordering of the hydrophobic
tails is rather strong, almost crystallinelike. Here, we have
used a single-chain density functional in a mean-field ap-
proach, and as a consequence the strong ordering effects can-
not be reproduced well: the mean-field approximation for
chain-chain correlations is obviously not very good for
strongly ordered materials. Since the Gaussian chain model
has no energetic bending terms, the molecules in our simu-
lation are more flexible than a hydrocarbon chain. The width
of the lamellae in the simulations is;2 nm, which indicates
that the tails of the Gaussian chain are considerably disor-
dered. This is not in agreement with the experimental find-
ings.

We conclude that in a qualitative sense the simulations
reproduce several important aspects of aggregate formation
in concentrated surfactant solutions, i.e., the effect of added
solvent on the aggregate structures, and the formation of
metastable states. In addition the simulations show a strong
influence of the thermal noise. The accurate reproduction of
crystallinelike ordering of tails is in the present model diffi-
cult to achieve, unless we find a better way to include the
chain-chain correlations. It is easy to change the parameters
of the Gaussian chain density functional in such a way that
more complex mixtures in 2D and 3D can also be studied.
We are currently investigating the application of the method
to solutions of long flexible polymer surfactants that do not
have crystallinelike ordering properties. In this case the
mean-field approximation is much better.
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